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Abstract
The dynamics of glasses is characterized by disorder-specific, more or less
localized modes: tunnelling states, soft vibrations and classical relaxation.
These modes coexist and interact with the sound waves, giving rise to anomalies
in the thermal properties of glasses at low temperatures. At higher temperatures,
the low-frequency dynamics is dominated by the classical secondary relaxation,
which crosses over to the primary relaxation at the glass transition.

The present article describes first the low-temperature glass anomalies in
the heat capacity and in the thermal conductivity. Then, three closely related
models are reviewed: the tunnelling model, the soft-potential model and the
Gilroy–Phillips model. The latter allows a joint quantitative description of
primary and secondary relaxation, giving a new view on the glass transition.
Finally, recent inelastic x-ray, light and neutron scattering experiments on the
mixture of sound waves and other modes in glasses are discussed.

1. Introduction

Following Jäckle (1987), one defines a glass as an amorphous solid obtained by cooling a
liquid through the glass transition, retaining the disordered liquid structure.

From the point of view of elasticity theory, a glass is a very simple solid, elastically
isotropic, described by a density ρ, a bulk modulus B and a shear modulus G. Consequently,
one has isotropic longitudinal and transverse sound velocities, respectively. The complications
begin when one looks for the absorption of these sound waves as a function of frequency and
temperature. Then one realizes that there is a multitude of other excitations coexisting and
interacting with the sound waves.

The key to the understanding of this multitude lies in the multiminimum concept of the
glass: though the disordered structure no longer flows, there are still many minima of the
potential energy. One has to reckon with low and high barriers between them, and one has
to take into account the energy difference between neighbouring minima of the glass. This
was first done in the tunnelling model for the glass anomalies below 1 K (Phillips 1972,
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Anderson et al 1972). The concept was applied to the classical relaxation in the glass phase,
called secondary relaxation to distinguish it from the primary relaxation at the glass transition,
by Gilroy and Phillips (1981). In the same decade, the tunnelling model was extended to treat
the crossover from tunnelling to low-frequency localized vibration on one side, and to classical
relaxation on the other in terms of the soft-potential model (Karpov et al 1983, Ilin et al 1987).

The present paper begins in section 2 with a short description of the universal low-
temperature anomalies of glasses (Phillips 1981). Section 3 continues with their modelling,
the tunnelling model and its two extensions, the soft-potential model for the crossover from
tunnelling to vibration and the Gilroy–Phillips model for the classical secondary relaxation of
the glass phase. It has recently been shown (Buchenau 2000) that the Gilroy–Phillips formalism
can be again extended to describe the primary relaxation at the glass transition, giving a new
and surprising view of the old glass transition puzzles. This joint description of flow process
and secondary relaxation in the glass phase will be presented in section 4.

Section 5 reviews x-ray, light and neutron experiments to investigate sound waves and
other modes in glasses, giving a feeling for the possibilities and limitations of the different
scattering techniques at the present stage. Section 6 gives a summary and the conclusions.

2. Low-temperature anomalies of glasses

Whatever problems we may have to understand the dynamics of glasses, there is one part which
is well understood, namely the sound waves at low frequencies. For these, the glass is simply
an isotropic elastic medium, described by its density ρ and its two sound velocities vl and vt

for longitudinal and transverse sound waves, respectively. In terms of the elastic constants c11

and c44, one has

ρv2
l = c11 ρv2

t = c44. (1)

The elastic constants can in turn be expressed by the bulk modulus B and the shear
modulus G

c11 = B +
4G

3
c44 = G. (2)

Debye’s famous consideration yields a density Vg/(2π)3 in wavevector space for these
sound waves, where Vg is the volume of the glass. For a given wavevector direction, one has
one longitudinal branch, vibrating parallel to the wavevector, and two transverse branches with
the vibrational amplitude perpendicular to the wavevector.

The total density of sound waves (normalized to 1) is

g(ω) = 3ω2

ω3
D

(3)

with the Debye frequency ωD given by

ω3
D = 18π2ρ

M(1/v3
l + 2/v3

t )
. (4)

Here M is the average atomic mass.
There is general agreement that the Debye model is a valid description of the sound waves

in glasses at low frequencies, at least up to about 300 GHz. What happens above that frequency
is again controversial. Neutron and x-ray experiments are able to supply information at these
higher frequencies. We will return to this point in section 5.
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Figure 1. Thermal conductivity of crystalline and
amorphous SiO2, taken from Cahill D 1989 Thesis
Cornell.

In any case, the contribution of the sound waves to the low-temperature heat capacity of
a glass with volume Vg will be well described by

cV = kB

4π

3
Vg

(
1

v3
l

+
2

v3
t

)
T 3 (5)

and the thermal conductivity κ of these sound waves should follow the textbook relation

κ = 1

3Vg

cV vl (6)

where v is the average sound velocity and l is the mean free path of the sound waves in the
glass. Thus one would expect a T 3 behaviour of both quantities at low temperatures.

Experimental reality is completely different (Zeller and Pohl 1971). Figure 1 shows
a measurement of the thermal conductivity on a log–log scale against the temperature T ,
comparing crystalline quartz with vitreous silica. One sees the Debye expectation fulfilled
in crystalline quartz; taking the absolute values, one finds a mean free path of the order of
the sample dimensions, showing that the main phonon scattering mechanism in the crystal is
boundary scattering. But the glass rather shows an approximate T 2-law, orders of magnitude
below the crystal values, which then even bends over into a plateau at 5 K. Obviously, there is
a very strong scattering mechanism for the phonons in the glass, which is absent in the crystal.

One gets a hint at the reason for this scattering by looking at the heat capacity, which
shows many additional excitations on top of the sound waves. Figure 2 shows the specific heat
Cp per g, plotted as Cp/T 3, again in a log–log scale against T . In this plot, the sound wave
contribution of equation (5) is a constant at 0.8 µJ g−1 K4, as one easily calculates from the
density and the sound velocities. The measured value at 0.2 K is a factor of 40 higher. The
temperature dependence of Cp between 0.2 and 1 K is more or less linear, T 1.2, indicating a
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Figure 2. Specific heat of amorphous SiO2, plotted as Cp/T 3 against T in a log–log scale.

more or less constant density of states. Above 1 K, the behaviour changes, indicating a stronger
and stronger increase of the number of additional modes with increasing level splitting. One
sees level splittings of about 0.4 meV, corresponding to frequencies of 100 GHz, in the specific
heat at 1 K. Obviously, something happens to the modes around this frequency. The onset of
the plateau of the thermal conductivity occurs at about the same temperature, suggesting that
the two things have something to do with each other. The increase in the number of additional
modes leads to an increase in the phonon scattering.

3. Modelling dynamics in disorder

3.1. The tunnelling model

The glass anomalies below 1 K can be explained in terms of the phenomenological tunnelling
model (Phillips 1972, Anderson et al 1972), assuming tunnelling in asymmetric double-well
potentials (figure 3). The essential point of the model is to consider the barrier height V and
the asymmetry � as independent variables, both of which are evenly distributed. Under this
assumption, one can calculate the resulting distribution of tunnelling states. In order to derive
their contribution to the specific heat and to the thermal conductivity, one needs their coupling
to the sound waves. This is described by two coupling constants γl and γt , defined for the
uniaxial strain εl = ε11 of the longitudinal sound wave and for the shear strain εt = ε11 − ε22

of the transverse sound wave, respectively. The coupling is such that the asymmetry changes
from � in the unstrained glass to � + γ ε in the strained glass.

With this coupling and the given Debye density of sound waves, one can determine the
relaxation time of a given tunnelling state to calculate its contribution to the specific heat,
the thermal conductivity and the ultrasonic absorption. One gets two contributions to the
ultrasonic absorption, resonant and relaxational ones. Since one deals with a two-level state,
the resonant interaction should saturate with increasing ultrasonic power, when the two levels
get equally populated. This was indeed found in experiment (Hunklinger et al 1972), giving
strong support to the tunnelling idea. More details on the model and on its comparison to
experiment can be found in Phillips’ book (Phillips 1981). Though not every experiment is
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Figure 3. Tunnelling levels in an asymmetric double-well potential
(schematic).

well reproduced, on the whole the model turned out to be able to describe the bulk of the glassy
anomalies below 1 K in many glasses with three parameters, the two coupling constants and
an average density P .

The tunnelling model does not explain the plateau in the thermal conductivity and the
rise to the peak in Cp/T 3. This peak corresponds also to a peak in Raman and neutron
spectra, the boson peak (see section 5). In the scattering experiments, one can look at the
temperature dependence of the inelastic scattering at the boson peak frequency. One finds
the linear increase with temperature expected for harmonic vibrations (for a tunnelling state,
the intensity would disappear as soon as the two levels are equally populated). This shows
that the plateau and the rise to the peak must be explained in terms of a crossover from
tunnelling states to low-frequency vibrations, which resonantly scatter the sound waves. In
order to describe this crossover, the tunnelling model was extended to the soft-potential model
described in the next subsection.

3.2. The soft-potential model

If one wants to describe double-well and single-well potentials with the same potential form,
one is forced to include a stabilizing fourth-order term in the expansion. Otherwise one never
gets the negative curvature of the double-well potential at the top of the barrier, together with
a rise of the potential at the sides.

If one further wants a continuous distribution of asymmetries and barrier heights, the
proper form to choose is

Epot (x) = W(D1x + D2x
2 + x4) (7)

where the multitude of different modes results from a broad distribution of D1 and D2 around
the value zero. W is an energy and x is a dimensionless measure of the mode displacement.
The most reasonable definition, which has been followed throughout in the literature (Karpov
et al 1983, Ilin et al 1987), is to take W as the zero-point energy in the purely quartic potential
D1 = D2 = 0, which requires a kinetic mode energy of the form

Ekin = h̄2

4W
ẋ2. (8)

With this choice, W is the crossover energy between vibrations and tunnelling states: there
can be no greater tunnelling splitting than W (at least not for symmetric potentials), and there
can be no lower vibrational frequency than W/h̄.

As for the tunnelling states, one very nearly (not exactly) reproduces the tunnelling model
postulating a constant distribution Ps both in D1 and D2, because one gets a practically
continuous distribution of barrier heights and asymmetries.

The coupling between sound waves and local modes is now given by a bilinear term in
the strain and the mode coordinate

δVl = %lxεl δVt = %txεt . (9)
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The coupling is conveniently expressed in terms of two dimensionless parameter combinations
of order 10−4

Cl = Ps%
2
l

Wρv2
l

Ct = Ps%
2
t

Wρv2
t

. (10)

Cl and Ct are defined in such a way that they are very nearly equal to (about a factor of 0.9
smaller than) the corresponding parameter combinations of the tunnelling model, which are
denoted by the same letters.

With these definitions and the four parameters W , Ps , Cl and Ct one can describe not only
the tunnelling states below 1 K, but also the plateau in the thermal conductivity in figure 1
and the minimum in Cp/T 3 in figure 2. In addition, one can describe the crossover in the
ultrasonic attenuation from the tunnelling plateau to thermally activated classical relaxation
with the same parameters (Ramos and Buchenau 1997).

However, the description breaks down as one goes to still higher frequencies or
temperatures. The assumption of a Ps which is constant everywhere fails to describe the
boson peak; if it were true, one should find a rise in the spectrum ∼ω2 without end. At the
relaxational side, one should find a rise of the internal friction ∼T 3/4, again without end.
Neither of the two is observed in experiment (Ramos and Buchenau 1997). Thus one has
to look for a more flexible extension of the tunnelling model to explain the dynamics of
glasses at higher temperature. On the relaxational side, such a flexible extension exists: the
Gilroy–Phillips model (Gilroy and Phillips 1981), which can not only be used to describe the
secondary relaxation in the glass phase, but even the primary relaxation of the flow process at
the glass transition and above.

3.3. The Gilroy–Phillips model

3.3.1. Arrhenius and Vogel–Fulcher laws. Classical relaxation in glasses, sometimes also
called secondary relaxation to distinguish it from the primary relaxation at the glass transition,
is generally believed to be well described in terms of the Arrhenius–Kramers picture (Kramers
1940), with a relaxation time τV given by the Arrhenius relation

τV = τ0 eV/kBT (11)

where τ0 is a microscopic time of the order of 10−13 s, V is the energy of the barrier between
two energy minima of the system and T is the temperature.

In contrast, the primary relaxation or α-process, the onset of the flow process at the glass
transition temperature Tg and above, seems to follow a much steeper law (Böhmer et al 1993,
Ediger et al 1996)

τα = τ0 eA/(T −T0) (12)

where A and T0 are constants with the dimension of a temperature. This is the well known
empirical Vogel–Fulcher–Tamman (VFT) or Williams–Landel–Ferry (WLF) equation. T0, the
Vogel–Fulcher temperature, is smaller than Tg; the closer it lies to Tg , the more fragile is the
glass former.

Since the Arrhenius law has a sound microscopic background (Kramers 1940) and the
VFT or WLF equation has not, it seems reasonable to build a joint quantitative description
on the former, bearing in mind the physical difference of the two processes (Buchenau 2000).
The proper basis for such an attempt is the Gilroy–Phillips model (Gilroy and Phillips 1981)
described in this subsection.
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Figure 4. Asymmetric double-well potential with barrier height V and
asymmetry � as a function of a generalized coordinate.

3.3.2. The asymmetric double-well potential. Let us denote the shear strain by ε, the shear
stress by σ and the (infinite-frequency) shear modulus by G. G will generally depend on the
temperature T .

The structural relaxation is taken to be a superposition of independent Debye relaxation
centres in asymmetric double-well potentials with two minima, as shown in figure 4. The
energy of the left minimum is −�/2 and the energy of the right minimum is +�/2. The
height of the barrier is V .

As in the tunnelling model, the interaction between the shear strain and the Debye
relaxation centre is described by the change of the asymmetry � under the influence of the
strain. The interaction is characterized by the coupling parameter γ , leading to an asymmetry
� + γ ε of the relaxation in the strained glass. γ must be considered to depend both on V

and �.
The free energy F of the relaxation centre reads

F = −kBT ln

[
2 cosh

(
� + γ ε

2kBT

)]
(13)

which has the second derivative with respect to the shear distortion ε

∂2F

∂ε2
= − γ 2

4kBT cosh2(�/2kBT )
. (14)

The second derivative determines the contribution of that specific relaxing entity to the
difference between the shear moduli at infinite and zero frequency. The equation shows that
the main influence on the shear modulus is due to relaxation in potentials with asymmetries
smaller than kBT ; for larger asymmetries the influence decreases rapidly because of the square
of the hyperbolic cosine in the denominator.

3.3.3. The barrier density function f (V ). We want to calculate the frequency dependence
of the shear modulus under the assumption of slowly varying distribution functions in the
parameters V and �. In detail, we assume a number density of relaxing entities n(V, �) and
an average coupling constant γ (V, �) which are both approximately constant if either V or
� is varied by an amount of the order of the thermal energy kBT .

Under this assumption, it is safe to neglect as well the influence of the asymmetry on the
relaxation time. We assume the relaxation time τV to be given by the Arrhenius equation (11).

We then integrate over the asymmetry � to obtain the step δG between the shear moduli
at infinite and zero frequency from all relaxation centres with barrier height between V and
V + dV

δG = dV

∫ ∞

−∞

γ 2n(V, �) d�

4kBT cosh2(�/2kBT )
. (15)
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Since one has only contributions in the near neighbourhood of � = 0, where n(V, �) ≈
n(V, 0), and since

∫ ∞

−∞

d�

cosh2(�/2kBT )
= 4kBT (16)

one finds

δG = γ 2n(V, 0) dV. (17)

This is different from a single relaxation in a symmetric potential, where the step in the modulus
is inversely proportional to the temperature. The physical reason for this difference is clear: as
the temperature rises, relaxation centres with higher and higher asymmetry begin to contribute
to the step in the modulus. This is an important difference between relaxation in crystals and
relaxation in disordered matter.

The temperature-independent step in the modulus is determined by the barrier density
function f (V ), defined by

f (V ) = γ 2n(V, 0)

G
. (18)

This parameter combination can be argued to remain independent of temperature, even if G

varies with temperature, considering the relaxing entity as a small misfit region in an elastic
medium (Mura 1982), a misfit region which is able to change the sign of the misfit by jumping
over the barrier. Here, however, this argument will not be given in detail.

The frequency dependence of the complex shear modulus at the frequency ω and the
temperature T reads

G′(ω, T )

G
= Ge

G
+

∫ ∞

0
f (V )

ω2τ 2
V dV

1 + ω2τ 2
V

(19)

G′′(ω, T )

G
=

∫ ∞

0
f (V )

ωτV dV

1 + ω2τ 2
V

(20)

where τV is a function of V by the Arrhenius relation, equation (11), and Ge is the zero-
frequency modulus after the decay of all the relaxations in the system.

In a viscoelastic liquid, the zero-frequency modulus Ge = 0. In the high-frequency limit,
equation (19) implies an important sum rule for the barrier density function

∫ ∞

0
f (V ) dV = 1. (21)

The two equations (19) and (20) describe the real and the imaginary part of the frequency-
dependent shear modulus at all frequencies and temperatures. As long as one can reckon
with a temperature-independent number of uncoupled relaxation centres, the barrier density
function f (V ) remains temperature independent.

But even if f (V ) depends on temperature, it can still be formally used to characterize the
shear relaxation. The advantage of the choice of f (V ) lies in the possibility to distinguish the
trivial Arrhenius temperature dependence from other, non-trivial temperature changes. These
non-trivial temperature changes will then be reflected in a temperature dependence of f (V ).
The inclusion of the flow process in such a description (Buchenau 2000) will be treated in the
next section.
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Figure 5. Secondary barrier density function fs(V ) (the shaded area), together with the cutoff by
the α-relaxation peak (schematic).

4. Secondary relaxation and glass transition

4.1. Primary and secondary barrier density function

It is quite clear that one needs to distinguish secondary and primary processes, because their
physical mechanism is different. To describe both within the Gilroy–Phillips formalism with
a barrier density function, one has to distinguish between fs(V ), the secondary barrier density
function of the secondary Arrhenius relaxation, and fα(V ), the primary barrier density function
for the primary α-process or flow process (see figure 5).

As is well established (Ferry 1980), the shape of the primary relaxation is independent of
the temperature; there is just a temperature shift of the characteristic relaxation time τα . This is
the time–temperature scaling of the α-process, sometimes also denoted as thermorheological
simplicity. It implies that the primary barrier density function fα(V ) is an essentially
temperature-independent function of V − Vα(T ), where Vα(T ) denotes the maximum of this
strongly peaked function. From the Vogel–Fulcher law, equation (12), one expects a divergence
of the fictive Arrhenius barrier Vα(T ) towards the Vogel–Fulcher temperature T0.

If time–temperature scaling holds, the weight wα of the α-process, given by

wα =
∫ ∞

0
fα(V ) dV (22)

should be temperature-independent. In the comparison to experiment, we will see that wα

tends to be close to a half.
What does this imply for the secondary relaxations? The α-process is also an upper cutoff

for the secondary relaxation; at the end of the process, the long-time shear modulus is zero. If a
secondary relaxation barrier is too high, the relaxing entity will flow away before it has a chance
to jump. Therefore there is a steep cutoff for the secondary barrier density function fs(V ) at
Vα(T ). According to the sum rule, equation (21),∫ Vα(T )

0
fs(V ) dV = 1 − wα = constant ≈ 1

2
. (23)

With this sum rule, the decrease of Vα(T ) with increasing temperature implies that the
secondary barrier density function fs(V ) must increase with increasing temperature. This
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increase will be stronger for more fragile glass formers. Such a connection between the
fragility and the rise of the fast process above Tg has been indeed postulated empirically
(Angell 1995); the Gilroy–Phillips formalism quantifies this connection.

The increase of fs(V ) above the glass temperature can be characterized to first order by

fs(V ) = fs(V , Tg)

[
1 + αs(V )

T − Tg

Tg

]
. (24)

4.2. The generic case fs(V ) = constant

The deep implications of the Gilroy–Phillips formulation of the α-process are more clearly
seen in the simplest possible case, shown in figure 5. Let us assume fs(V ) = constant and
αs(V ) = constant. If the rise of fs(V ) with temperature is strictly linear, the Vogel–Fulcher
temperature T0 is given by

T0 = Tg

(
1 − 1

αs

)
. (25)

It is obvious how this comes about: at T0, the density of secondary processes extrapolates to
zero. Thus one has to proceed to infinitely high barriers to satisfy the sum rule (23). This gives
a completely new view on the puzzling fragility of glass formers: the abnormal temperature
dependence is a consequence of the time–temperature scaling of the α-process and of a strictly
linear rise of the number of secondary relaxing units with temperature.

The decrease of the secondary barrier density function fs(V ) implies a decrease of the
number of minima of the glass former. Thus one gets an equality (Angell and Rao 1972)
between the Vogel–Fulcher and the Kauzmann temperature TK , the latter being defined as the
temperature where the excess entropy of the glass former over the corresponding crystalline
system extrapolates to zero. If there are no minima between which the glass former can jump,
there is no excess entropy, the old Adam–Gibbs idea (Adam and Gibbs 1965).

Note that equation (25) for the Vogel–Fulcher or Kauzmann temperature holds not only
in the generic case of a constant secondary barrier density function, but for any fs(V ), as long
as one can reckon with the same strictly linear temperature rise of the function for all V .

It should be noted further that this is not a model, but a description. The Gilroy–Phillips
formulation does not really explain the puzzling features of the glass transition, the fragility
and the entropy crisis. But it supplies a description which allows us to look for a new kind of
explanation.

4.3. An example: polystyrene

The amorphous polymer polystyrene is one of the most fragile substances (Böhmer et al 1993),
where one can rely on a large number of experimental data, both at low temperatures and at
the glass transition.

The low-temperature data were evaluated for temperatures above 10 K; at that limiting
temperature, one can begin to reckon with the validity of the Kramers picture (Kramers 1940).
Figure 6 shows a compilation of many mechanical low-temperature data: torsion pendulum
data at 1 Hz (Schwarzl 1990, figure 9.16), at 6 Hz (Sinnott 1962), vibrating reed data at 3, 34
and 87 kHz (Nittke et al 1995, Yano and Wada 1971, Topp and Cahill 1996) and Brillouin
damping of longitudinal sound waves at 10 GHz (Sokolov et al 1997). The data cannot be
said to coincide perfectly in this Gilroy–Phillips evaluation; nevertheless, the agreement is
good enough to support the concept of a constant number density of uncoupled relaxation
centres. There is no systematic variation with frequency; one rather has the impression that



Dynamics of glasses 7837

���� ���� ���� ���� ����
�

�

�

�

�

�	
������� ���������

���������

����������

�����������

�����������

�����������

����������
�
��
��
��
�
�

� ������!��"!�������

Figure 6. Secondary barrier density function fs(V ) calculated from literature data of the
mechanical damping of amorphous polystyrene in the glass phase at different frequencies. For
references see the text. The curve is a fit; the same fit is also shown in figures 7, 8 and 9.

the differences stem from the different sample preparation of these seven measurements. The
curve in figure 6 represents the fit of fs(V ) to these mechanical data. It is seen that fs(V )

rises towards low barriers, as one would indeed expect from the soft-potential model, which
predicts a proportionality to V −1/4. But the fit falls below the soft-potential expectation even
at rather low barriers, similar to observations in other glasses (Ramos and Buchenau 1997).

Figure 7 compares the same fit to the evaluation of Raman (Surovtsev et al 1998) and
neutron (Koizumi et al) data. The good agreement between data points and the mechanical data
fit curve in figure 7 corroborates the earlier conclusion (Surovtsev et al 1998) of a temperature-
independent fs(V ) in the glass phase of polystyrene. Note that the earlier conclusion does
not stem from a comparison of Raman and mechanical data, but rather from a comparison of
Raman data at three different temperatures, namely 100, 200 and 300 K. The two different
ways to check the temperature behaviour of fs(V ) in the glass phase provide the same result.

This temperature independence, however, no longer holds in the undercooled liquid phase,
above the glass temperature of 372 K of polystyrene. Figure 8 shows neutron (Koizumi et al)
and longitudinal sound wave damping data from the Brillouin technique (Patterson 1977)
above Tg . In order to relate to the preceding figures, f (V ) is again plotted against the barrier
height V . This implies that one sees the onset of the increase of fs(V ) with increasing
temperature at different values of V in the two techniques, at 0.074 eV for the neutrons and
at 0.163 eV for the Brillouin data. Note that in both cases the frequency is too high to see the
α-process at the temperatures of the measurement.

We conclude that fs(V ) does indeed increase above Tg , as postulated above on the basis
of the sum rule for f (V ), equation (21), and on the basis of the temperature dependence of the
α-process. The rise of fs(V ) above Tg can be characterized by the linear relation equation (24)
with αs = 7.7 ± 1 for the neutron data and αs = 10 ± 3 for the Brillouin data (in the latter
case, the large error is due to the small number of points and the insecurity of the value at Tg),
within experimental error the same temperature coefficient for both sets of data.

Figure 9 shows fs(V ) for polystyrene over the whole barrier range, together with the results
of a torsion pendulum measurement at 1 Hz up to Tg (Schwarzl 1990, figure 9.16), an ultrasonic
measurement just below Tg (Sahnoune et al 1996) and the neutron result up to Tg (Koizumi
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Figure 7. Secondary barrier density function fs(V ) calculated from literature data of neutron and
Raman scattering from amorphous polystyrene in the glass phase. For references see the text.
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Figure 8. Secondary barrier density function fs(V ) calculated from literature data of neutron and
Brillouin data of amorphous polystyrene, both in the glass phase and above the glass temperature Tg .
For references see the text.

et al). The shaded area represents fs(V ); the α-peak above 1 eV will be discussed below.
The α-process is characterized by the position Vα(T ), the full width at half maximum �α

of fα(V ) and the weight wα . The latter two should be temperature independent. Let us define
Vα(Tg) = 15kBTg ln(10) in order to have the corresponding relaxation time at 100 s, and let
us choose a Gaussian for the primary barrier density function fα(V ).

If one knows fs(V ) from measurements in the glass phase, wα can be calculated from the
sum rule, equation (23). In the case of polystyrene, one finds wα = 0.54 for the fit function in
figure 9.

The width �α = 0.107 eV, the glass temperature Tg = 372 K and the coefficient
αs = 6.9 ± 0.1 were fitted to creep data (Plazek and O’Rourke 1971) of polystyrene with
a molecular weight of 600 000 g mol−1, data which are also treated in Ferry’s book (Ferry
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Figure 9. Secondary barrier density function fs(V ) calculated from literature mechanical damping
and neutron data of amorphous polystyrene up to the glass transition. The peak at the end shows
the Gaussian fα(V ) describing the α-process at the glass temperature Tg . For references see the
text.
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Figure 10. Creep data of the α-process in polystyrene at the glass transition (for reference see the
text), together with a fit in terms of f (V ).

1980) and which are shown in figure 10. The fit requires as an additional parameter the
infinite-frequency modulus G = 1.69 GPa at 373.8 K. Together with the low-temperature data
and the known density variation of polystyrene with temperature (Schwarzl 1990, figure 6.12),
one calculates a Grüneisen 1g = 3.8 for G in polystyrene. With this value, one can also
calculate G for higher temperatures.

As seen in figure 10, one can describe the temperature shift of the α-process with an
appropriate rise of fs(V ) above Tg . The sum rule, equation (23), forces a temperature shift
of Vα(T ), which in turn provides the experimentally observed shift factors towards higher
temperatures.

The scheme works quite well up to three decades in compliance; for still higher
compliances, one gets into the plateau regime from the chain entanglement (Ferry 1980),



7840 U Buchenau

which is beyond the present considerations.
The coefficient αs = 6.9±0.1 for polystyrene, obtained from the temperature dependence

of the shift factors in figure 10, agrees within experimental error with the values αs = 7.7 ± 1
and αs = 10 ± 3 determined from neutron and Brillouin data above Tg (see figure 8).

The example shows that the Gilroy–Phillips formalism is indeed able to give a reasonable
joint description of primary and secondary relaxation, helping to understand the glass transition
from the glass side. It does not help, however, to understand the vibrational dynamics of glasses
treated in the next section in the context of scattering experiments.

5. Inelastic scattering from glasses

5.1. Scattering from sound waves

The inelastic coherent scattering from sound waves in glasses (Carpenter and Pelizzari 1975)
consists of two parts: Brillouin scattering at low momentum transfer Q from the longitudinal
sound waves alone and umklapp scattering from both longitudinal and transverse sound waves
at higher momentum transfer. In the classical high-temperature approximation, the Brillouin
scattering is given by

SBrill(Q, ω) = kBT Q2

2Mω2
δ(ω ± vlQ) (26)

with kB as Boltzmann’s constant, M as the average atomic mass and vl as the longitudinal
sound velocity. For a damped harmonic oscillator, the two δ-functions have to be replaced by
the DHO equation

F(ω) = 2

π

521

(ω2 − 52)2 + ω212
(27)

with the characteristic frequency 5 = vlQ and a broadening 1.
The Brillouin scattering thus gives a more or less well defined peak both in a constant-Q

scan, which samples the scattering at different frequencies with a constant Q (provided Q is
not too large), and in a constant-E scan, a scan at constant frequency ω = E/h̄ (E is the
energy transfer of the scattering process), which samples the scattering for different values of
the momentum transfer Q.

Neglecting the influence of Debye–Waller factors, the umklapp scattering from
longitudinal and transverse sound waves in the long-wavelength limit is given by

SU(Q, ω) = S(Q)
kBT Q2

12π2ρ

(
1

v3
l

+
2

v3
t

)
(28)

where ρ is the mass density and S(Q) is the integrated scattering, which reflects the pair
correlation functions of the atomic positions in the glass.

In the umklapp case, the constant-Q scan sampling the spectrum simply gives a constant
intensity, though naturally each individual sound wave supplies a δ-function at its individual
frequency. This constant intensity can be calculated from the density and the sound velocities,
and is related to the constant in Cp/T 3 of equation (5). A constant-E scan in a fixed frequency
window gives an intensity proportional to Q2S(Q).

5.2. Scattering from other modes

If we again restrict ourselves to a classic approximation, the other modes coexisting with the
sound waves might be either relaxational modes or vibrational modes. In the first case, the
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Figure 11. Neutron spectrum of amorphous polybutadiene divided by the Bose–Einstein factor at
three different temperatures below and above the glass temperature Tg = 178 K.

spectrum is a Lorentzian 1/(1 +ω2τ 2) centred at the elastic line, where τ is the relaxation time
of the mode. In the second, the spectrum is a δ-function at the frequency of the mode.

The existence of both kinds of additional mode is demonstrated in figure 11, a neutron
measurement in polybutadiene at three different temperatures evaluated in terms of an effective
vibrational density of states. At the lowest temperature of 60 K, one observes the boson peak
at an energy transfer of 2.5 meV. Above that frequency, there is little change with temperature,
indicating a vibrational density of states. But below the boson peak one finds the onset of
relaxational motion already in the glass phase, and even more so above the glass transition.
We conclude that there are both relaxational and vibrational modes coexisting with the sound
waves.

One can learn about the eigenvector of these additional modes by doing constant-E scans,
to look at the dynamic structure factor of the mode mixture in a given frequency window.
Figure 12 shows such a measurement at the boson peak of vitreous silica (amorphous SiO2).
One finds an oscillating structure factor, but the oscillations are different from the Q2S(Q)

expectation for the sound waves. Also, the intensity is a factor of eight too high compared
to the Debye expectation. The experimental structure factor turned out to be well explained
in terms of coupled librations of corner-connected SiO4-tetrahedra (Buchenau et al 1988), a
finding which has since been corroborated by simulation (Taraskin and Elliott 1997).

In order to evaluate such dynamic structure factor measurements in the inelastic scattering,
one must be able to calculate the dynamic structure factor from the atomic displacements of
a given mode. Let us assume a displacement �uj of atom j with scattering length bj at the
equilibrium position �Rj in this mode. If one neglects the Debye–Waller factors, the dynamic
structure factor F(Q) in the one-phonon approximation reads

F( �Q) =
∣∣∣∣

N∑
j=1

exp(i �Q �Rj) �Q�uj

∣∣∣∣
2

(29)

where the sum goes over all N atoms of the glass. As long as one can reckon with the validity
of the one-phonon approximation, the equation holds for both relaxation and vibration; if
they have the same eigenvector, they have the same Q-dependence, though their spectrum is
different.
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Figure 12. Dynamic structure factor at the boson peak of vitreous silica (Wischnewski et al 1998).

5.3. X-rays, neutrons and light

Light scattering measurements have a much better energy resolution than neutron and x-ray
scattering, at least when one deals with the weak signals from relaxations and vibrations in
glasses. For this case, the Raman technique can still resolve frequencies down to 8 GHz or
0.032 meV (Wiedersich et al 2000); the neutron technique can measure down to 0.5 meV
and the inelastic x-ray scattering to 2 meV. As it chances, this latter limit happens to lie at the
crossover from relaxation to vibration (see figure 11), so at present the inelastic x-ray scattering
from glass excitations is restricted to measurements of vibrational excitations.

On the other hand, the Raman technique suffers from a poorly defined scattering cross
section; at present, it is not possible in practice to calculate the Raman intensities for a given
model of the motion. Also, varying the scattering angle practically does not change the Raman
spectrum; one does not have the possibility to extract information from constant-E scans as
in neutron and x-ray scattering. However, as we saw in figure 12 and as we will see from
inelastic x-ray scattering examples, the constant-E scans provide very valuable information
on the modes and their eigenvector, exactly the information which one wants to have.

The problem of the Raman information has been drastically demonstrated by a recent
comparison of Raman and hyper-Raman scattering from vitreous silica (Hehlen et al 2000).
Hyper-raman scattering is Raman scattering with simultaneous frequency doubling of the
scattered light. It turned out that the hyper-Raman spectrum almost exactly reproduced the
neutron spectrum, because the selection rule is such that one sees the coupled rotation of
the corner-connected SiO4-tetrahedra. The Raman spectrum has a completely different shape.

5.4. Brillouin and sub-Brillouin scattering

Though inelastic x-ray scattering is still a rather young technique, it is already clearly superior
to neutron scattering at very small momentum transfer. Neutrons have a kinematic restriction:
the relation Emax = h̄2Q2/2m (m mass of the neutron) defines the maximum energy transfer
one can attain at a given momentum transfer Q—and this requires a measurement at scattering
angle zero. If one translates the relation into sound and neutron velocities, one finds that the
neutron should have at least the longitudinal sound velocity to see the Brillouin scattering.
Even then, a constant-Q scan will end at the phonon frequency; one can see the frequencies
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Figure 13. X-ray Brillouin scattering from glycerol just below the glass transition temperature:
constant-Q scan (Masciovecchio et al 2000).

below the Brillouin line (and indeed one finds some sub-Brillouin scattering intensity there
(Sokolov et al 1999, Russina et al 2000)), but one cannot measure to higher frequencies.
X-rays do not have that problem, because the small energy transfer of a Brillouin scattering
event is negligible compared to the energy of the x-ray quantum. On the other hand, x-rays
have not yet attained the energy resolution of the neutron time-of-flight technique. Therefore
the two techniques at present are complementary to each other (Sokolov et al 1999).

The high quality of recent inelastic x-ray Brillouin studies is demonstrated in figures 13
and 14 for glycerol at a temperature just below Tg = 190 K. Figure 13 shows a constant-Q
scan, figure 14 two constant-E scans. Note that the scan at the lower energy of 4.7 meV shows
again sub-Brillouin scattering intensity below the Brillouin line for 8 meV. This is consistent
with the neutron results of sub-Brillouin scattering at much lower energies (Sokolov et al 1999,
Russina et al 2000).

5.5. Umklapp scattering

For vitreous silica, we have seen in figure 12 that the inelastic scattering at the boson peak
need not follow the Q2S(Q) behaviour predicted for the sound waves (Carpenter and Pelizzari
1975). In that particular case, one seems to have SiO4 tetrahedron librations, which have a
clearly distinct dynamic structure factor.

But naturally, each glass will have its own characteristic low-frequency vibrations,
depending on which are the specific weak restoring forces of the system. In a polymer or in a
large-molecule molecular glass like glycerol, the weak springs are the bond torsion motions,
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Figure 14. X-ray Brillouin scattering from glycerol just below the glass transition temperature:
constant-E scans at 4.7 and 8 meV (Masciovecchio et al 2000). Inset A shows the extrapolation of
the dispersion from low-frequency data (the broken line); inset B shows simulation results (Sampoli
et al 1998).

together with the weak Van der Waals forces between different chains or molecules. In that
case, the eigenvector of the soft motion is more difficult to visualize than in silica. In any
case, the measurement of the dynamic structure factor in figure 15, again from the work of
Masciovecchio et al (2000), shows that the first sharp diffraction peak in S(Q) is reproduced in
the dynamic structure factor of the inelastic scattering in glycerol, similar to neutron findings
in polybutadiene (Sokolov et al 1999), but obviously different from the silica case.

The data show that the inelastic x-ray scattering technique begins to compete with neutron
scattering also in the umklapp regime. This competition will turn out to be very valuable for the
field of dynamics of glasses. The analysis of the mode eigenvectors in the region of the boson
peak will be much easier, because again the two techniques are complementary. The x-rays
tend to see mainly the motion of the heavier atoms, because the scattering length for x-rays
is proportional to the number of electrons of a given atom. The scattering length for neutron
scattering, in contrast, has nothing to do with the number of electrons around the nucleus, but
is a purely nuclear property. To take one last time the example of silica, neutrons see mainly
the oxygen, x-rays the silicon atoms. A correct model of the motion must be able to describe
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Figure 15. X-ray Brillouin scattering from glycerol just below the glass transition temperature:
constant-E scan at 4.7 meV up to higher momentum transfer (Masciovecchio et al 2000). The
inset shows the spectrum at small Q.

the dynamic structure factors of both techniques, which will differ from each other.

5.6. Summary and conclusions

We have taken a tour de force through the field of dynamics of glasses, beginning with the
low-temperature anomalies of glasses and their description in terms of phenomenological
models, the tunnelling model, the soft-potential model and the Gilroy–Phillips model. These
three models are not in contradiction to each other. They are all based on the same idea,
namely that local soft modes in glasses are influenced by the asymmetry of the surroundings
and couple to the sound waves.

The Gilroy–Phillips model has the particular advantage of being very flexible, because it
describes the classical Arrhenius relaxation in the glass phase in terms of a whole function, the
barrier density function f (V ). As it turns out, the Gilroy–Phillips formalism can describe any
relaxation, provided one allows for a temperature dependence of the barrier density function.
Thus one can also describe the primary relaxation of the flow process at the glass transition,
introducing two separate parts of the barrier density function with different temperature
behaviour (Buchenau 2000). Note that the glass transition is not really explained. The Gilroy–
Phillips formalism supplies only a reformulation of well known equations in terms of a barrier
density function. It is a new way to look at the data, an encouragement to seek explanations in
a new direction, complementary to attempts to understand the glass transition from the liquid
side (Götze and Sjögren 1992), because it starts from a description of the relaxation in the
glass phase. But it does not either explain the fast rise of the secondary relaxation above Tg ,
or supply a quantitative explanation of why the shear modulus breaks down completely when
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it is halved by the secondary relaxation. It merely helps to quantify and to visualize these
experimental facts.

In the last part of the paper, the present stage of the scattering studies of the low-frequency
vibrational dynamics at the boson peak has been reviewed. There are beautiful new results
from the inelastic x-ray scattering technique. Though inelastic x-ray scattering (at least for the
purpose of studying low-frequency modes in glasses) is presently still limited to studies above
2 meV, it is preferable to neutrons if one wants to see a Brillouin line in a glass. The technique
begins to be able to measure constant-E scans, also at higher momentum transfer Q. Thus
one is able to combine Brillouin and umklapp scattering in a single measurement, as shown
in figure 15. The results encourage the hope to develop a better understanding for the boson
peak, which is still a puzzle.
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